TURUNAN KEDUA
Turunan kedua dari y=f(x) terhadap x dinotasikan sebagai berikut
Turunan kedua merupakan turunan yang diperoleh dengan menurunkan kembali turunan pertama. Perhatikan contoh berikut :
Penggunakan untuk turunan kedua ini antara lain untuk :
a. Menentukan gradien garis singgung kurva
Jika diketahui garis g menyinggung kurva y=f(x) pada titik (a,f(a)) sehingga gradien untuk g adalah
Sebagai contoh tentukanlah gradien garis singgung dari kurva y=x²+3x dititik (1,-4) !
Penyelesaian :
Sehingga gradien garis singgung kurva y=x²+3x dititik (1,-4) adalah m=y(1)=2.1+3=5
b. Menentukan apakah interval tersebut naik atau turun
kurva y =f(x) naik jika f ‘ (x) >0 dan kurva y=f(x) turun jika f ‘ (x) <0. Lalu bagaimana cara menentukan f ‘ (x) > 0 atau f ‘ (x) <0 ? kita gunakan garis bilangan dari f ‘ (x). Perhatikan contoh berikut :
Tentukanlah interval naik dan interval turun dari fungsi y=x³+3x²-24x !
Jawab :
y=f(x)=x³+3x²-24x →f ‘ (x)=3x²+6x-24=3(x²+2x-8)=3(x+4)(x-2)
Berdasarkan garis bilangan yang diperoleh diatas :
f ‘ (x) >0 untuk x<-4 dan x>2 yang merupakan interval untuk fungsi naik.
F ‘ (x) <0 untuk -4 < x < 2 yang merupakan interval untuk fungsi turun.
c. Menentukan nilai maksimum dan nilai minimum
Nilai maksimum dan nilai minimum fungsi ini sering disebut juga dengan nilai ekstrim atau nilai stasioner fungsi, yang dapat diperoleh pada f ‘ (x)=0 untuk fungsi y=f(x). Untuk lebih jelasnya perhatikan contoh berikut.
Tentukan nilai ekstrim dari fungsi y=x³-3x²-24x-7 !
Jawab :
y’=3x²-6x-24
nilai ekstrim diperoleh dari y’=o maka
3x²-6x-24 = 0
(x²-2x-8)=0
(x-4)(x+2)=0
x1=4 ; x2=-2
Berdasarkan garis bilangan diatas :
Fungsi maksimum pada x=-2 sehingga nilai balik maksimumnya yaitu :
f(-2)=(-2)³-3(-2)²-24(-2)-7
f(-2)=21
Fungsi minimum pada x=4 sehingga nilai balik minimumnya yaitu :
f(4)=(4)³-3(4)²-24(4)-7
f(4)=-87
TURUNAN FUNGSI TRIGONOMETRI
Berikut ini rumus untuk turunan fungsi trigonometri :
Perhatikan contoh berikut :
Jawab :
KALKULUS 1
Sabtu, 06 Juli 2019
Penggunaan Turunan Grafik Dan Fungsi
PENGGUNAAN TURUNAN GRAFIK DAN FUNGSI
Penggunaan turunan dalam bidang kalkulus tentu saja tidak terlepas dari Ilmuan besar dunia Isaac Newton. Beliau lahir di Inggris pada tahun 1642, Isaac newton sebagai remaja sedikit menunjukan rasa ketertarikannya terhadap akademis, Dia lebih menyukai membuat roda air, dan berbagai macam perkakas lainnya, namun pamannya mengenali bakat luar biasa Isaac pada saat itu, kemudian ibunya pun mengirimnya ke Trinity College dari universitas Cambrige.
Setelah sesaat di wisuda dari Trinity, newton pergi pulang untuk menghindari wabah penyakit pes 1664-1665 selama 18 bulan, dan sejak januari 1665 dia mulai mendalami matematika dan ilmu yang terkemuka, Dalam waktu yang singkat Newton berhasil menemukan teorema binomial umum, elemen dari kalkulus diferensial maupun integral, teori warna-warni, dan hukum gravitasi universal.
Lalu newton pun meninggal sebagai seorang yang terhormat pada usia 85 dan di makamkan Westminster Abbey.
Sub bab 1
Maksimum dan Minimum
Penggunaan konsep ini sering sekali di lakukan dalam kehidupan sehari-hari untuk memaksimalkan dan meminimumkan fungsi tertentu, sehingga bila demikian metode kalkulus menyediakan sarana yang ampuh untuk memecahkan masalah seperti itu
Andaikan kita mengetahui fungsi f dan domain ( daerah asal ) S Apakah f memiliki nilai maksimum atau minimum pada S.
Anggap bahwa nilai-nilai tersebut ada. Kita ingin mengetahui lebih lanjut dimana S nilai-nilai itu berada. Akhirnya kita dapat menentukan nilai-nilai maksimum atau minimum.
Definisi :
Andaikan S, daerah asal f , memuat titik c. Kita katakan bahwa :
I. f(c) adalah nilai maksimum f pada S jika f(c ) ≥ f(x) untuk semua x di S;
II. f(c ) adalah nilai minimum f pada S jika f(c ) ≤ f(x) untuk semua x di S;
III. f(x) adalah nilai ekstrim f pada S jika ia adalah nilai maksimum atau nilai minimum
dan untuk mengetahui apakah suatu f mempunyai nilai maksimum ataupun minimum pada S, terdapat suatu teorema yang bagus untuk mengetahuinya, walaupun bukti yang teliti sangat sukar,
TEOREMA A :
(Teorema eksistensi Maks-min), jika f continue pada selang tertutup (a,b), maka f mencapai nilai maksimum dan nilai minimum.
Perhatikan kata kunci : f harus kontinu dan himpunan S harus berupa selang tertutup
Untuk mengetahui dimana terjadinya nilai-nilai ekstrim, biasanya fungsi yang ingin di maksimumkan, atau diminimumkan akan mempunyai suatu selang I sebagai daerah asalnya, tetpi selang tersebut boleh berupa sembarang tipe. Beberapa dari selang ini memuat titik-titik ujung; beberapa tidak. Misalnya , I = (a.b) memuat titik ujung keduanya; (a,b) hanya memuat titik ujung kiri; (a,b) tidak memuat titik ujung satupun.
Dan nilai-nilai ekstrim sebuah fungsi yang didefinisikan pada selang tertutup sering kali terjadi pada titik-titik ujung ( lihat gambar 1 )
Jika c sebuah titik pada mana f’(c) = 0 , kita sebut c titik stasioner . namun itu diturunkan dari fakta bahwa pada titik stasioner , grafik f mendatar , karena garis singgung mendatar .nilai-nilai ekstrim seringkali terjadi pada titik stasioner (perhatikan gambar 2)
Dan jika c adalah titik dalam dari I dimana f’ tidak ada , kita sebut c titik singular. Nilai-nilai ekstrim dapat terjadi di titik singular (lihat gambar 3)
Ketiga jenis titik ini (titik ujung, titik stasioner, dan titik singular ) merupakan titik-titk kunci dari teori maks-min. sebarang titik dalam daerah asal fungsi f yang termasuk salah satu dari tipe ini disebut sebuah titik kritis.
TEOREMA B :
(teorema titik kritis). Andaikan f didefinisikan pada selang I yang memuat titik c. jika f(c) adalah titik ekstrim , maka c haruslah suatu titik kritis; yakni c berupa salah satu :
I. Titik ujung dari I ;
II. Titik stasioner dari f(f’( c ) = 0 ) ;
III. Titik singular dari f(f’( c ) tidak ada ).
Mengingat teorema A dan B untuk menghitung nilai maksimum dan minimum suatu fungsi kontinu f pada selang tertutup I
Langkah 1 ; carilah titik-titik kritis dari f pada I
Langkah 2 ; hitunglah f pada setiap titik kritis, yang terbesar adalah nilai maksimum yang terkecil adalah nilai minimum.
Contoh soal : Carilah nilai maksimum dan minimum dari f(x) = -3x3 + x3 pada [-1,2]
Penyelesaiannya ;
Langganan:
Postingan (Atom)