Senin, 11 Maret 2019

Macam Macam Bilangan dan Pengertiannya.

Pengertian Bilangan








Bilangan adalah suatu konsep matematika yang digunakan sebagai pencacahan dan pengukuran. Lambang atau simbol untuk mewakili bilangan disebut dengan angka atau lambang bilangan. 


Macam-Macam Bilangan 


Terdapat berbagai macam jenis bilangan, berikut ini adalah penjelasan tentang macam-macam bilangan beserta contohnya lengkap


Bilangan Asli


Pengertian bilangan asli adalah bilangan positif yang di mulai dari bilangan satu keatas. Contohnya: N = {1, 2, 3, 4, 5, 6, 7….}


Bilangan Bulat


Pengertian bilangan bulat adalah himpunan bilangan bulat negatif, bilangna nol dan bilangan bulat positif. Contohnya: B = {…., -4, -3, -2, -1, 0, 1, 2, 3, 4,…..} 



Bilangan Cacah

Pengertian bilangan cacah adalah himpunan bilangan yang terdiri bilangan positif danb nol. Contohnya : C = {0, 1, 2, 3, 4, 5, 6, 7, 8,….}


Bilangan Prima


Pengertian bilangan prima adalah bilangan yang tidak dapat dibagi oleh bilangan lainnya kecuali bilangan itu sendiri dan 1. Contohnya: P = {2, 3, 5, 7, 11, 13, 17, …..}Bilangan Nol

Pengertian bilangan nol adalan bilangan nol (0) itu sendiri. Contohnya: N = {0


Bilangan Pecahan


Pengertian bilangan pecahan adalah bilangan yang dapat dinyatakan dalam bentuk a/b dengan a dan b adalah bilangan bulat dan b ≠ 0. Bilangan a disebut dengan pembilang dan b disebut dengan penyebut. Contohnya: H = { ⅓, ⅔, ⅛, ⅝, ….. }
Keterangan: 4/2 = 2, berarti 4/2 bukan bilangan pecahan


Bilangan Rasional


Pengertian bilangan rasional adalah bilangan yang dinyatakan dalam bentuk a/b dengan a dan b merupakan anggota bilangan bulat dan b ≠ 0. Contohnya: R = { ¼, ¾, …. }


Bilangan Irrasional


Pengertian bilangan irrasional adalah himpunan bilangan yang tidak dapat dinyatakan dalam bentuk pecahan atau bilangan sekain bilangan rasional. Contohnya : I = { √2, √3, √5, √6, √7, ….. }
Keterangan √9 = 3 berarti √9 bukan bilangan irrasional.


Bilangan Real


Pengertian bilangan real adalah himpunan bilangan berupa gabungan antara bilangan rasional dan bilangan irasional. Contohnya: R = { 0, 1, ¼, ⅔, √2, √5, ….. }


Bilangan Negatif


Pengertian bilangan negatif adalah bilangan yang bernilai negatif. Contohnya: N = { -3, -5, ¼, …. }
Keterangan -1/-4 = ¼, jadi -1/-4 bukan bilangan negatif.


Bilangan Positif


Pengertian bilangan positif adalah bilangan yang bernilai positif selain nol. Contohnya: P = {2, 3, 4, 5, ¼, ….}


Bilangan Genap


Pengertian bilangan genap adalah bilangan-bilangan yang akan habis jika dibagi menjadi 2. Contohnya: Ge = {2, 4, 6, 8, 10, 12, ….}


Bilangan Ganjil


Pengertian bilangan ganjil adalah bilangan yang jika dibagi 2 maka akan tersisa 1 atau bilangan yang dapat dinyatakan dengan 2n-1 dengan n adalah bilangan bulat. Contohnya: Ga = {-3, -1, 1, 3, 5, 7, 9, 11, …. }


Bilangan Komposit


Pengertian bilangan komposit adalah bilangan asli yang lebih besar dari 1 tapi bukan termasuk dalam bilangan prima. Contohnya: K = {4, 6, 8, 9, 10, 12, ….}


Bilangan Riil


Pengertian Bilangan Riil adalah bilangan yang dapay ditulis dalam bentuk desimal. Contohnya: L = { 5/8, log 10, ….}


Bilangan Imajiner


Pengertian bilangan imajiner adalah bilangan i (satuan imajiner), dimana i merupakan lambang bilangan baru yang bersifat i2 = -1. Contohnya: I = {i, 4i, 5i, …..}


Bilangan Kompleks


Pengertian bilangan kompleks adalah bilangan yang anggotanya a+bi, dimana a,b ϵ R, i2 = -1. Dengan a bagian bilangan riil dan b bagian bilangan imajiner. Contohnya K = {2-3i, 8+2, …..}


Bilangan Kuadrat


Pengertian bilangan kuadrat adalah bilangan yang dihasilkan dari perkalian suatu bilangan dengan bilangan itu sendiri sebanyanyak dua kali dan disimbolkan dengan pangkat 2.
Contohnya : K = {22, 32,42,52,62,….}


Bilangan Romawi


Pengertian bilangan romawi adalah suatu sistem penomoran yang berasal dari romawi kuno menggunakan huruf latin yang melambangkan angka numerik. Contoh: M = {I, II, III, IV, V, VI, VII, VIII, XI, X, XI,…..}

Tidak ada komentar:

Posting Komentar